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Charge Kondo circuit as a detector for electron-electron interactions in a Luttinger liquid
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We investigate the effects of the electron-electron interactions on the quantum transport through a charge
Kondo circuit. The setup consists of a quantum dot sandwiched between two leads by two nearly transparent
single mode quantum point contacts. The size of the interacting area L in the Luttinger liquid formed in the
vicinities of the narrow constrictions is assumed to be much smaller compared to the size of the quantum
dot a. We predict that the interplay between the electron-electron interactions in the Luttinger liquid and the
fingerprints of the non-Fermi liquid behavior in the vicinity of the two channel Kondo intermediate coupling
fixed point allows one to determine the interaction strength through the power-law temperature scaling of the
electric conductance.
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The phenomenon associated with a resonance scattering
of itinerant electrons on a quantum impurity with nonzero
magnetic moment is known as the Kondo effect [1]. While
this effect has a long history in connection with the con-
densed matter community [2], it keeps attracting a growing
interest for several directions of an interdisciplinary research
[3–6]. Having many facets related to the effects of strong
electron-electron interactions, the Kondo effect appears to be
an important player in the physics of both heavy fermion
compounds and high temperature superconductors [2]. With
the rapid development of nanotechnologies the Kondo effect
has been engineered in different nanodevices, where artificial
structures can be exploited in the regimes that are inaccessible
in the bulk systems with magnetic impurities [7–15].

It is known that quantum effects play an important role
in thermodynamic and transport properties of nanostructures
[16,17]. A single-electron transistor (SET) which for exam-
ple can be built of a small (few hundred nanometers size)
semiconductor quantum dot (QD) sandwiched between two
metallic electrodes [18] is one of the most elementary nanode-
vices to investigate quantum effects on transport properties.
The electrons’ transport in a SET is governed by the Coulomb
blockade (CB) phenomenon [19], which exhibits the electro-
static repulsion between electrons in the small confined region
[20–22]. When the number of electrons in the QD is odd, at
sufficiently low temperature, the transport in SET is featured
by the strong correlations and the Kondo effect is observed
[7–10]. Namely, below a characteristic temperature which is
called the Kondo temperature TK , the unpaired electron in the
dot hybridizes with the cloud of conduction electrons in the
leads. This produces a sharp peak of the width TK (Abrikosov-
Suhl resonance [2]) in the local density of states of the SET.
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The Kondo effect in a SET in which the QD plays effectively
the role of magnetic impurity is similar to the conventional
Kondo effect in the bulk metals [23].

The high controllability of the nanostructures and
fine-tunability by the external electric and magnetic fields
applied to the QDs [16,17] allow one to investigate several
regimes of the Kondo physics in which the devices show
different universal behaviors. The SETs in experiments [7–9]
operate in the regime of the conventional single impurity
S = 1/2 single channel Kondo (1CK) model. The systems are
characterized by the Kondo temperature TK which determines
the universal Fermi liquid (FL) behavior at T < TK . The
properties of the Kondo system in the limit T > TK can be
accessed through the perturbation theory approach [1,2].
For an M-orbital spin-S Kondo model the way the mobile
electrons screen the impurity spin determines the system
properties at low temperatures T < TK (here TK is the Kondo
temperature defined for the M-orbital spin-S system using
a spirit of the 1CK). For instance, for the full screened case
in which M = 2S the system belongs to the FL universality
class [24–26]. The physics is almost the same when the
system is in the underscreened (M < 2S) regime, while the
unscreened part of the impurity magnetic moment produces
the Curie-type contribution to the physical observables.
However, for the overscreened case (M > 2S) the system
is characterized by the non-Fermi liquid (NFL) properties
[24,25,27–34]. The NFL regime of the two-channel S = 1/2
Kondo model has been observed in the experiment [10].

As the Kondo devices are the two component systems con-
sisting of the itinerant and localized subsystems, the effects
of interactions are characterized by different energy scales.
The Coulomb interaction in the localized subsystem (QD)
is quantified in terms of the charging energy EC = e2/2C,
where C is the capacitance of the dot. The electron-electron
interactions in the itinerant subsystem (mobile electrons)
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depend on the electron’s density and normally are treated as
a perturbation in the theory of FL [26]. However, the situa-
tion is different in one dimension (1D), where the arbitrary
weak interactions completely modify the ground state and
drive the system from the FL to a Tomonaga-Luttinger liquid
(TLL) [35,36] regime. The low-energy excitations in TLL are
collective charge and spin density modes. The Hamiltonian
describing the interacting 1D electrons is thus mapped onto
a noninteracting bosonic Hamiltonian for distinct spin and
charge degrees of freedom with effective Fermi velocities and
Luttinger parameters [37–40]. The TLL is characterized by
power-law decay of various correlation functions with ex-
ponents depending on the strength of the electron-electron
interactions through the Luttinger parameter g [41,42], where
g = 1 for the noninteracting system. The first and famous
example of the effects of electron-electron interactions on the
transport in a 1D electron liquid with a single- and double-
barrier defect was elucidated by Kane and Fisher [43]. It was
shown that the sign of the interaction determines the perturba-
tive relevance of the impurity to the TLL. Namely, the strength
of the barrier(s) grows for repulsive interaction (g < 1), while
it decreases for the attractive interaction (g > 1). Therefore,
the conductance vanishes at the impurity site at temperature
T → 0 in the first case and reaches the maximal allowed
by quantum mechanics value in the second case. At finite
temperature the conductance depends on the temperature in a
power-law form. The Kane-Fisher theory has implications for
many quantum systems which are realizable in experiments
such as quantum Hall materials [44], electronic quantum cir-
cuits [45,46], and cold atomic gases [47–49]. The influence
of electron-electron interactions in the TLL with magnetic
impurity on the Kondo correlations has also been addressed
in a number of works [50–55]. It is shown that the exponents
in the power-law temperature dependency of the quantum
thermodynamic and transport observables are functions of the
Luttinger parameters.

The charge Kondo effect [56–60], in contrast to the spin
Kondo effect [2,7–10], is associated with the twofold degen-
eracy of the charge degree of freedom at the Coulomb peaks
and theoretically described in terms of an isospin [61,62].
A charge Kondo setup is implemented by a large metallic
Coulomb blockaded QD strongly coupled to one (or sev-
eral) lead(s) through an (or several) almost fully transmitting
single-mode quantum point contact(s) [QPC(s)]. This setup
is described by the theoretical model proposed by Flensberg,
Matveev, and Furusaki (FMF) [56–58]. Recently, two- and
three-channel charge Kondo circuits have been investigated
in the breakthrough experiments in semiconductor nanostruc-
tures in the integer quantum Hall (IQH) regime [59,60]. These
experiments provide successful realization of the FMF model
[56–58], with the chiral edge states scattered at QPCs. The
two degenerate charge states of the QD in the charge Kondo
setup represent the internal degree of freedom of the “quantum
impurity.” The electron location (namely, in or out of QD) is
treated as an isospin variable [61,62] similarly to the isospin
of the FMF model. The number of QPCs is thus equivalent
to the number of the orbital channels in the conventional
S = 1/2 Kondo problem. Moreover, the new experimental
ideas [59,60] enrich the possibilities of getting an access to
the multichannel Kondo physics and therefore investigating
the NFL regimes [24].

FIG. 1. Schematic setup of the two channel charge Kondo circuit
following experiments [59,60]. The two dimensional electron gas,
2DEG (orange area), is in the integer quantum Hall regime ν = 2.
Only one (outer) chiral edge mode (red solid lines with arrows) con-
tributes to the backscattering at the almost transparent single-mode
quantum point contacts (QPCs). A central metallic island (quantum
dot, QD, green hatched area) is connected to two leads through two
uncorrelated QPCs. As the QPCs cross-talk through the QD, two
independent origins (see inset) are chosen in the middle of each QPC.
The size of QD a � L, where L is the size of the interacting area. The
inhomogeneous Luttinger parameters g(x) characterize the strength
of the electron-electron interactions. The interactions asymptotically
vanish far away from the QPC (x = ±∞).

The electrons transferring through almost transparent QPC
in the FMF model are described by a 1D Hamiltonian. In
addition, the charging energy EC in the experiments [59,60]
is much smaller compared to the Fermi energy of the leads.
It allows us to linearize the spectra of the 1D electrons
near the Fermi points. The Abelian bosonization technique
[37–40], which enables one to treat the electron-electron
interactions in 1D systems exactly, is applied to solve the
problems. The FMF model has been extensively studied for
several years [56–58,61–66]. However, mainly due to sub-
stantial computational difficulties the 1D electron systems at
the QPCs have been assumed noninteracting. The effects of
electron-electron interactions in the vicinity of the QPC(s)
have been first accounted for very recently [67,68]. This mo-
tivates us to raise an important question: is it possible to
detect the electron-electron interactions in the two-channel
charge Kondo (2CCK) circuit built with a Luttinger liquid
component(s)?

In this Letter we answer the above question by investigat-
ing theoretically the effects of the electron-electron interac-
tions on the linear charge conductance in the multi-QPCs FMF
setup (see Fig. 1). For this purpose the model corresponding to
the experimental implementation of Refs. [59,60] is used. We
consider the charge Kondo circuit simulator shown in Fig. 1.
We assume that a large metallic island (QD) is embedded into
two-dimensional electron gas (2DEG) and connects to two
large electrodes through the single-mode QPCs. The regime
of a strong spin polarizing magnetic field is considered and
therefore the spin index of the electrons is omitted (see de-
tails and discussions in Refs. [58,63]). The electron-electron
interactions in the vicinities of the QPCs are controlled by
the external gate voltages [69–71] and play a significant role
on the transport properties. We assume that the effects of
electron-electron interactions are negligible far away from the
narrow constrictions. The interacting electrons at the 1D edge
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are described by the TLL model. We investigate the limit
L � a, where L is the size of the interacting area (TLL) and a
is the size of the QD. The perturbative result (in terms of the
electron backscattering amplitudes |r1,2| at the QPC1,2) for the
linear electric conductance G (in h̄ = kB = 1 units) is given by

G = G0

[
1 − |r+|2C1(g)

(
gEC

D

)2g−2( T

gEC

)g−2

−|r−|2C2(g)

(
gEC

D

)2g−2( T

gEC

)g
]
. (1)

We denote |r±|2 = [|r1|2 + |r2|2 ± 2|r1||r2| cos(2πN )], N is
a dimensionless parameter (integer at Coulomb valleys and
half-integer in CB peaks) controlled by the gate voltage,
G0 = e2/4π , C1(g) = (2γ )gπ−3/2�[g/2]/4�[1/2 + g/2], and
C2(g) = g(2γ )gπ5/2�[1 + g/2]/16�[3/2 + g/2], with γ =
eC, C ≈ 0.5772 is the Euler’s constant, and �(x) is the
Gamma function. The notations T , EC , and D are used for
the temperature, charging energy of the QD, and bandwidth
of the TLLs, respectively.

The central result of this Letter is given by Eq. (1). In
particular, a new regime of quantum conductance inaccessible
by the Kane-Fisher theory [43] is predicted. Equation (1)
quantifies the effects of interplay between electron-electron
interactions and the Kondo phenomenon in the charge Kondo
simulators. The models illustrated by the electric circuits in
Fig. 1 can be mapped onto the 2CCK models when two charge
states of the QD are degenerate and the mean level spacing is
negligibly small. The condition for achieving the intermediate
coupling two channel Kondo (2CK) fixed point, at which
the physical observables of the system are characterized by
the NFL behavior, is the exact symmetry of the two QPC
reflection amplitudes: |r1| = |r2| = |r|. Applying these condi-
tions to Eq. (1) we obtain G = G0[1 − 4C2(g)|r∗|2(T/gEC )g],
with |r∗| = |r|(gEC/D)g−1. This power-law temperature de-
pendence of the electric conductance accounts for both
effects of electron-electron interactions and 2CK correlations.
The conductance approaches its unitary limit G0 at suffi-
ciently low temperatures as G = G0[1 − (T/T ∗)g] with T ∗ =
gEC/[4C2(g)|r∗|2]1/g. It allows us to estimate the crossover
(Kondo) temperature T ∗ and the temperature scaling of the
conductance in the TLL-based 2CCK circuits. The nonin-
teracting case g = 1 where G0 − G ∝ T/T ∗ at T � T ∗ has
been recently investigated in the breakthrough experiment
with the IQH setup [59]. Explicit dependence of the electric
conductance temperature behavior on the Luttinger parameter
g allows one to determine the effects of repulsive electron-
electron interactions along the edge through the zero bias
anomaly transport measurements [72].

Below we summarize the effects of the electron-electron
interactions in the QPC-QD-QPC structure on the dif-
ferential (zero bias) conductance. On the one hand, the
electron-electron interactions induce the power-law temper-
ature dependence as G0 − G ∝ T g−2. This effect is similar
to the behavior of the linear conductance in the infinite TLL
with two weak impurities (potential barriers) [43,74]. How-
ever, it is notably different from corresponding Kane-Fisher
[43] dependence of the conductance in the TLL with a single
impurity G0 − G ∝ T 2g−2 [40,43]. On the other hand, the

G0 − G ∝ T g−2 feature dominates away from the CB peaks
(N is half integer) provided that the third term in Eq. (1)
∝C2(g)T g is negligibly small compared to the second term
∝C1(g)T g−2. The validity of Eq. (1) obtained as the second
order perturbation is limited by the validity of the perturbation
theory. As it is known from the Kane-Fisher theory [43], the
fourth order correction (∝|r1,2|4) can play an important role
when g < 1/2 (see Refs. [43,74] for details). Therefore, we
assume that the condition g > 1/2 is satisfied in all equa-
tions of this Letter. Moreover, the renormalization of the weak
barrier potential at the QPCs |r∗

1,2| = |r1,2|(gEC/D)g−1 due
to the electron-electron interactions in the TLL reveals the
Kane-Fisher phenomenon [43] and can be analyzed with the
help of the RG method. The weak barrier potential’s renormal-
ization shows that if the interaction in the TLL is repulsive
(g < 1), |r∗

1,2| increases when g is decreased reaching the
weak coupling limit |r∗

1,2| → 1. In contrary, the scattering
at the QPC becomes irrelevant (|r∗

1,2| → 0) if g > 1 (the at-
tractive interaction regime). In order to satisfy the condition
for the perturbation theory calculations performed assuming
the smallness of the renormalized reflection amplitudes |r∗

1,2|,
the electron-electron interactions must be considered being
relatively weak. The weak repulsive interaction in the TLL
found in experiments [70,71] corresponds to the regime 0.6 �
g < 1. The noninteracting limit g = 1 recovers the (A9) of
Ref. [63]. We suggest that the domain of parameters acces-
sible for the observation of Eq. (1) can be, for instance, the
Luttinger parameter regime 0.5 < g � 1, the small charging
energy in comparison with the bandwidth of the TLL EC/D ∼
0.2, and the small reflection amplitudes |r1|2 = |r2|2 ∼ 0.1.
The appropriate temperature range is discussed in the next
paragraph.

In the absence of the backscattering at the QPCs, the
current operator commutes with the charging Hamiltonian.
The conductance is thus insensitive to the Coulomb blockade.
When EC = 0, the equivalent electric circuit for the setup in
Fig. 1 is given by a series of two QPCs, where each QPC
behaves as a resistor with the resistance 2π/e2. Therefore,
the conductance in the limit EC = 0 is temperature indepen-
dent. While the electron-electron interactions result in the
renormalization of the conductance quantization in the infinite
TLL as gG0 [40,43], the unitary limit G0 in the finite system
described by Eq. (1) is independent of this interaction. It is
consistent with the physics of the finite TLL attached to the
FL leads [75–79]. In fact, the interaction immunity of the
conductance quantization is the result of two effects, namely,
the interplay between the TLL conductance and the contact
conductance at the interface of the TLL and the FL reservoir.
The contact conductance originates from the processes that
take place outside of the interacting area as explained in the
Landauer theory on transport in mesoscopic devices [80].
When EC 
= 0, the small corrections to the linear conductance
[the second and third terms in Eq. (1)] characterize the meso-
scopic Coulomb blockade oscillation (the term ∝cos[2πN]).

The fact that the second term of Eq. (1) dominates when the
gate voltage N is detuned from the half-integer values leads
to the breakdown of the perturbation theory at sufficiently
low temperatures. Therefore, the condition for temperature
to validate the perturbation theory reads as |r∗|2/(2−g)gEC �
T � gEC . We emphasize that the temperature regime
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T � |r∗|2/(2−g)gEC cannot be accessed by perturbative cal-
culations and requires the nonperturbative treatment. An
alternative possible method is investigating the tunneling in-
stead of the weak backscattering at the QPCs [81].

Below we present the sketch of the derivation of the result,
Eq. (1), for the limit L � a [82]. The device shown in Fig. 1
consists of a large central metallic island (QD) connected
to two large electrodes through two single-mode QPCs. The
two TLLs modeling the two QPCs are “communicating” only
through the central area of the QD (green hatched area in
Fig. 1). Two TLLs have the same length L which is assumed
to be much smaller than the size a of the QD: L � a. This
setup is similar to the one in the Furusaki-Matveev (FM)
theory [58,63].

To compute the conductance we apply the path integral
formulation of 2CCK described in gross details in Appendix A
of Ref. [63]. The action S consists of three terms S = S0 +
SC + S′, where S0, SC , and S′ describe the TLL (formed at
the narrow constrictions), weak Coulomb blockade in the QD,
and weak backscattering at the QPCs, respectively. Following
FM formalism [63], the field φ1(x, t ) describes charge excita-
tions in the left lead and the left part of QD, while φ2(x, t )
describes charge excitations in the right lead and the right
part of QD. Since the size of the QD is assumed to be large
enough, the energy-level spacing is neglected assuming that
the condition vF /a → 0 is applied.

The Euclidean action S0 describing two separated TLLs
with two independent origins chosen in the middle of each
QPC is written as

S0 = 1

2π

∑
j=1,2

∫
dx

∫ β

0
dt

1

g(x)

×
[

[∂tφ j (x, t )]2

u(x)
+ u(x)[∂xφ j (x, t )]2

]
. (2)

Here, both TLLs are assumed to have the same Luttinger
parameter g(x) and effective velocity u(x) and β = 1/T . We
assume that the noninteracting boundary conditions g(x) =
1, u(x) = vF are satisfied for |x| > L/2 (the FL reservoirs
and the inside QD). The Luttinger parameter g(x) = g and
velocity u(x) = v for the |x| < L/2 (v ≈ vF /g) account for
the electron-electron interaction’s effects inside the finite-size
TLLs. The actions SC and S′ are given by

SC =
∫ β

0
dt

EC

π2
[φ2(0, t ) − φ1(0, t ) − πN]2, (3)

S′ = D

π

∫ β

0
dt{|r1| cos[2φ1(0, t )] + |r2| cos[2φ2(0, t )]}, (4)

where the reflection amplitudes of the QPC1(2) are assumed
to be small |r1(2)| � 1.

The conductance through the system is computed in the
linear response regime by applying the Kubo formula [83].
In the zero-frequency limit the linear conductance is related
to the average of the current flowing into the QD through
the QPC1 and the current flowing out of the QD through
the QPC2. By introducing new (so-called pseudospin and
charge) variables, φs/c = [φ2 ± φ1]/

√
2, we define the current

in terms of bosonic fields as Î = e∂tφs(0, t )/
√

2π . Finally,

performing the Fourier transform φs(0, t ) = ∑
ωn

φs(iωn)
e−iωnt/2π , where ωn = 2πnT is Matsubara frequency, we
rewrite the Kubo formula as follows:

G = −i
e2T

2π2
lim
ω→0

ω lim
iωn→ω+i0+

〈φs(−iωn)φs(iωn)〉. (5)

Since the action S is Gaussian at x 
= 0, one can integrate out
all degrees of freedom φs,c(x 
= 0, t ). The effective action (see
details of the derivation in the Supplemental Material [84]) is
given by

Seff = 1

2πβ

∑
n

∑
i=s,c

G−1
ωn

(0, 0)φi(iωn)φi(−iωn)

+SC + S′. (6)

This action is used for the perturbative calculation of conduc-
tance. The average 〈φs(−iωn)φs(iωn)〉 is evaluated assuming
smallness of the reflection amplitudes at both QPCs. Here
Gωn (x, x′) is the Green’s function of the spatially inhomo-
geneous [due to different values of the Luttinger parameter
g(x) and the velocity u(x) inside and outside the interacting
area] TLLs attached to the noninteracting leads. Applying the
Maslov-Stone approach [75] we obtain (see the Supplemental
Material [84])

Gωn (x, x′) = g

2|ωn|
1

κ2+e
|ωn |L

v − κ2−e
−|ωn |L

v

×
{
κ2

−e± |ωn |(x−x′ )
v e− |ωn |L

v + κ2
+e

∓|ωn |(x−x′ )
v e

|ωn |L
v

+2κ+κ− cosh

[ |ωn|(x + x′)
v

]}
. (7)

Here κ± = (1 ± g) and the sign ± stands for the case x >

x′ and x < x′, respectively. The Green’s function Eq. (7) at
x = x′ = 0 approaches asymptotically the value g/2|ωn| in
the “high”-frequency (temperature) limit (ωn � v/L), while
it reaches 1/2|ωn| when the frequency (or temperature) is
lowered to satisfy the condition ωn � v/L. The crossover of
these two regimes occurs at the so-called critical temperature
T cr ∼ vF /gL.

In the absence of backscattering (|r1,2| = 0), Eq. (5) at the
dc limit is determined by the low-frequency regime of Eq. (7).
The conductance thus acquires its unitary value G0. However,
a correction to the conductance due to the weak backscattering
is obtained by using both high- and low-frequency asymp-
totics of Eq. (7) which depend on the temperature differently
(the ωn = 0 term vanishes; see [79,84,85]). Therefore, at the
high-temperature regime, namely T � T cr , we obtain Eq. (1)
(see the detail of calculations in [84]), in which the tem-
perature scalings are governed by the Luttinger parameter g
similarly to the case of spatially homogeneous TLL. In the
limit T � T cr , the conductance is no longer temperature de-
pendent. The interaction-induced renormalization in the low
temperature limit is cut off by the finite interaction region (L)
of the TLL [85]. One thus can qualitatively estimate the lin-
ear conductance in the low-temperature regime by replacing
T → v/L in Eq. (1); see, e.g., Refs. [79,85].

We finally estimate the temperature T cr , at which the
crossover between high- and low-temperature regimes occurs.
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Choosing the Fermi velocity of the edge modes in the IQH
effect as vF ∼ 105 m/s [86,87] and the length of the QPC as
L ≈ 0.6 µm [88], we obtain T cr ≈ 1 K. Therefore, in order
to observe the effects discussed after Eq. (1), the device from
Refs. [59,60] can be used with some modifications to increase
the charging energy of the QD EC ∼ 1–10 K and the electron-
electron interaction in the vicinity of QPCs.

In conclusion, we have theoretically investigated the effects
of the electron-electron interactions on the electric transport
through a charge Kondo circuit. Having been inspired by the
experiments [59,60] we analyzed the experimentally relevant
case of the interacting area in QPC being small compared
to the size of QD L � a and investigated the temperature
regime |r∗|2/(2−g)gEC � T � gEC . The power-law tempera-
ture dependence of the linear conductance is predicted to be

modified by the effects of the electron-electron interactions in
the TLL through the Luttinger parameter g. Notably, when the
system approaches the 2CK intermediate coupling fixed point,
the universal temperature scaling of the conductance is fully
determined by the NFL behavior G0 − G ∝ (T/T ∗)g. We sug-
gest that the key predictions of this Letter are to be used for
measuring the effects of the electron-electron interactions in
the two channel charge Kondo–IQH circuits.
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